长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
Many modern research fields increasingly rely on collecting and analysing massive, often unstructured, and unwieldy datasets. Consequently, there is growing interest in machine learning and artificial intelligence applications that can harness this `data deluge'. This broad nontechnical overview provides a gentle introduction to machine learning with a specific focus on medical and biological applications. We explain the common types of machine learning algorithms and typical tasks that can be solved, illustrating the basics with concrete examples from healthcare. Lastly, we provide an outlook on open challenges, limitations, and potential impacts of machine-learning-powered medicine.
translated by 谷歌翻译
The detection of anomalies in time series data is crucial in a wide range of applications, such as system monitoring, health care or cyber security. While the vast number of available methods makes selecting the right method for a certain application hard enough, different methods have different strengths, e.g. regarding the type of anomalies they are able to find. In this work, we compare six unsupervised anomaly detection methods with different complexities to answer the questions: Are the more complex methods usually performing better? And are there specific anomaly types that those method are tailored to? The comparison is done on the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We compare the six methods by analyzing the experimental results on a dataset- and anomaly type level after tuning the necessary hyperparameter for each method. Additionally we examine the ability of individual methods to incorporate prior knowledge about the anomalies and analyse the differences of point-wise and sequence wise features. We show with broad experiments, that the classical machine learning methods show a superior performance compared to the deep learning methods across a wide range of anomaly types.
translated by 谷歌翻译
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
translated by 谷歌翻译
To train deep learning models, which often outperform traditional approaches, large datasets of a specified medium, e.g., images, are used in numerous areas. However, for light field-specific machine learning tasks, there is a lack of such available datasets. Therefore, we create our own light field datasets, which have great potential for a variety of applications due to the abundance of information in light fields compared to singular images. Using the Unity and C# frameworks, we develop a novel approach for generating large, scalable, and reproducible light field datasets based on customizable hardware configurations to accelerate light field deep learning research.
translated by 谷歌翻译
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译
Counterfactuals are often described as 'retrospective,' focusing on hypothetical alternatives to a realized past. This description relates to an often implicit assumption about the structure and stability of exogenous variables in the system being modeled -- an assumption that is reasonable in many settings where counterfactuals are used. In this work, we consider cases where we might reasonably make a different assumption about exogenous variables, namely, that the exogenous noise terms of each unit do exhibit some unit-specific structure and/or stability. This leads us to a different use of counterfactuals -- a 'forward-looking' rather than 'retrospective' counterfactual. We introduce "counterfactual treatment choice," a type of treatment choice problem that motivates using forward-looking counterfactuals. We then explore how mismatches between interventional versus forward-looking counterfactual approaches to treatment choice, consistent with different assumptions about exogenous noise, can lead to counterintuitive results.
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
Controlled text generation is a very important task in the arena of natural language processing due to its promising applications. In order to achieve this task we mainly introduce the novel soft prompt tuning method of using soft prompts at both encoder and decoder levels together in a T5 model and investigate the performance as the behaviour of an additional soft prompt related to the decoder of a T5 model in controlled text generation remained unexplored. Then we also investigate the feasibility of steering the output of this extended soft prompted T5 model at decoder level and finally analyse the utility of generated text to be used in AI related tasks such as training AI models with an interpretability analysis of the classifier trained with synthetic text, as there is a lack of proper analysis of methodologies in generating properly labelled data to be utilized in AI tasks. Through the performed in-depth intrinsic and extrinsic evaluations of this generation model along with the artificially generated data, we found that this model produced better results compared to the T5 model with a single soft prompt at encoder level and the sentiment classifier trained using this artificially generated data can produce comparable classification results to the results of a classifier trained with real labelled data and also the classifier decision is interpretable with respect to the input text content.
translated by 谷歌翻译
Generative adversarial networks are a promising tool for image generation in the astronomy domain. Of particular interest are conditional generative adversarial networks (cGANs), which allow you to divide images into several classes according to the value of some property of the image, and then specify the required class when generating new images. In the case of images from Imaging Atmospheric Cherenkov Telescopes (IACTs), an important property is the total brightness of all image pixels (image size), which is in direct correlation with the energy of primary particles. We used a cGAN technique to generate images similar to whose obtained in the TAIGA-IACT experiment. As a training set, we used a set of two-dimensional images generated using the TAIGA Monte Carlo simulation software. We artificiallly divided the training set into 10 classes, sorting images by size and defining the boundaries of the classes so that the same number of images fall into each class. These classes were used while training our network. The paper shows that for each class, the size distribution of the generated images is close to normal with the mean value located approximately in the middle of the corresponding class. We also show that for the generated images, the total image size distribution obtained by summing the distributions over all classes is close to the original distribution of the training set. The results obtained will be useful for more accurate generation of realistic synthetic images similar to the ones taken by IACTs.
translated by 谷歌翻译